

Papillary Muscle VT Ablation

Young-Hoon Kim, MD

Arrhythmia Center Korea University, Medical College Seoul, Korea

ICE guided naviagation of ablation catheter around Papillary Muscle

JACC: CLINICALELECTROPHYSIOLOGYVOL.1, NO.6, 2015

Original Article

http://dx.doi.org/10.4070/kcj.2013.43.12.811 Print ISSN 1738-5520 • On-line ISSN 1738-5555

Electrophysiological Characteristics Related to Outcome after Catheter Ablation of Idiopathic Ventricular Arrhythmia Originating from the Papillary Muscle in the Left Ventricle

Ji-Eun Ban, MD¹, Hyun-Soo Lee, MPH¹, Dae-In Lee, MD¹, Hwan-Cheol Park, MD², Jae-Seok Park, MD¹, Yasutsugu Nagamoto, MD¹, Jong-II Choi, MD¹, Hong-Euy Lim, MD¹, Sang-Weon Park, MD¹, and Young-Hoon Kim, MD¹

¹Division of Cardiology, Department of Internal Medicine, Korea University Medical Center, Seoul, Korea ²Division of Cardiology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea

(Korean Circ J 2013;43:811-818)

Table 1. Baseline characteristics of study patients								
	LV PM VAs (n=12)							
Age, years	52±9							
Gender, female/male	7/5							
Symptom duration, months	8.6±10.9							
Ejection fraction (%)	53±9							
VT/NSVT/PVC, n	4/6/2							
Electrocardiography								
Axis, superior/inferior	11/1							
QRS width during arrhythmia (ms)	146±17							
Notches in precordial leads, n (%)	8 (66.7)							
EP study and ablation								
Site of origin of VA, posterior PM/anterior PM	10/2							
Induction with PES, n (%)	1 (8.3)							
Provocation with isoproterenol, n (%)	4 (33.3)							
Activation time at ablation site (ms)	35±11							
Full matched pace map (12/12), n (%)	8 (66.7)							
VA acceleration during ablation, n (%)	9 (75.0)							
Different VA morphology, n (%)	3 (25.0)							
Radiofrequency delivered (minute)	16±16							
Procedure time (minute)	156±86							
Follow-up duration (month)	12±9							

able 2. Comparison of patient characteristics between the successful and recurrence groups							
Successful group (n=8)	Recurrence	ce group (n=4)	р				
Bipolar electrogram							
R wave duration (ms)	29.2±7.9	37.1±8.5	0.45				
R wave amplitude (mV)	1.42±0.55	0.44±0.23	0.01				
High amplitude discrete potentials >1.0 mV, n (%)	7 (85.7)	0 (0)	< 0.01				
Purkinje potential, n (%)	2 (25)	2 (50)	0.34				
Unipolar electrogram							
QS morphology, n (%)	8 (100)	3 (75.0)	0.14				
Δt (ms)	58±8	37±9	0.04				
Slow downstroke >50 ms, n (%)	7 (85.7)	1 (25.0)	0.03				

http://dx.doi.org/10.4070/kcj.2013.43.12.793 Print ISSN 1738-5520 • On-line ISSN 1738-5555

Papillary Muscle Ventricular Tachycardia: Another Zigsaw Puzzle to Be Solved

Dong-Gu Shin, MD

Cardiovascular Division, Department of Internal Medicine, Yeungnam University Hospital, Daegu, Korea

YM Park. International J of Arrhythmia 2015;16(4):219-223

Anatomic and electrophysiological localization of papillary muscle PVC

Circ Arrhythm Electrophysiol. 2015;8:616-624

Left Posterior Fascicular VT

Papillary Muscle Ventricular Arrhythmia

Reference:

- 1. Circ Arrhythmia Electrophysiol. 2008;1:23-29.
- 2. Heart Rhythm, Vol 5, No 11, November 2008
- 3. J Cardiovasc Electrophysiol, Vol. 20, pp. 866-872, August 2009
- 4. J Cardiovasc Electrophysiol, Vol. 21, pp. 62-69, January 2010

Heart Rhythm, Vol 14, No 11, November 2017

Heart Rhythm, Vol 14, No 11, November 2017

Heart Rhythm, Vol 14, No 11, November 2017

Ablation of PVC-triggered VF in a 28-year-old patient with structurally normal heart and resuscitated sudden cardiac death.

Heart Rhythm, Vol 14, No 11, November 2017

The Advisor HD Grid has revolutionized the art of multi-electrode mapping, providing us with information that we had not seen previously with standard multi-electrode mapping catheters. Use of the EnSite Precision system and intracardiac echo complements this technology well.

Role of Papillary Muscle in the Generation and Maintenance of Reentry During Ventricular Tachycardia and Fibrillation in Isolated Swine Right Ventricle

Young-Hoon Kim, MD; Fagen Xie, PhD; Masaaki Yashima, MD; Tsu-Juey Wu, MD; Miguel Valderrábano, MD; Moon-Hyoung Lee, MD; Toshihiko Ohara, MD; Olga Voroshilovsky, MS; Rahul N. Doshi, MD; Michael C. Fishbein, MD; Zhilin Qu, PhD; Alan Garfinkel, PhD; James N. Weiss, MD; Hrayr S. Karagueuzian, PhD; Peng-Sheng Chen, MD

Background-The role of papillary muscle (PM) in the generation and maintenance of reentry is unclear.

Methods and Results—Computerized mapping (477 bipolar electrodes, 1.6-mm resolution) was performed in fibrillating right ventricles (RVs) of swine in vitro. During ventricular fibrillation (VF), reentrant wave fronts often transiently anchored to the PM. Tissue mass reduction was then performed in 10 RVs until VF converted to ventricular tachycardia (VT). In an additional 6 RVs, procainamide infusion converted VF to VT. Maps showed that 77% (34 of 44) of all VT episodes were associated with a single reentrant wave front anchored to the PM. Purkinje fiber potentials preceded the local myocardial activation, and these potentials were recorded mostly around the PM. When PM was trimmed to the level of endocardium (n=4), sustained VT was no longer inducible. Transmembrane potential recordings (n=5) at the PM revealed full action potential during pacing, without evidence of ischemia. Computer simulation studies confirmed the role of PM as a spiral wave anchoring site that stabilized wave conduction.

Conclusions—We conclude that PM is important in the generation and maintenance of reentry during VT and VF. (Circulation. 1999;100:1450-1459.)

Kim et al Papillary Muscle and Reentry Circulation. 1999;100:1450-1459

2019 APHRS Expert Consensus Statement on Three-

Dimensional Mapping Systems for Tachycardia developed in collaboration with HRS, EHRA and LAHRS

Young-Hoon Kim, Shih-Ann Chen, Sabine Ernst, Carlos E. Guzman, Seongwook Han, Zbigniew Kalarus, Carlos Labadet, Yenn-Jian Lin, Li-Wei Lo, Akihiko Nogami, Eduardo B. Saad, John Sapp, Christian Sticherling, Roland Tilz, Roderick Tung, Yun Gi Kim, Martin K. Stiles-

YH Kim, Nogami A, et al. 2019 APHRS Expert Consensus Statement

Table 9-1. Purkinje-related Monomorphic VTs.

- I. Verapamil-sensitive left fascicular-Purkinje VT+
 - Left posterior type.

÷

ų,

- i. Left posterior septal fascicular-Purkinje VT+
- ii. Left posterior papillary muscle fascicular-Purkinje VT+
- Left anterior type
 - j. Left anterior septal fascicular-Purkinje VT+
 - ii. Left anterior papillary muscle fascicular-Purkinje VT

In the papillary muscle fascicular VTs, fibromuscular bands

near papillary muscles can be the substrate of the circuit.

. Bundle branch reentry v r and internasticular reentry v r

YH Kim, Nogami A, et al. 2019 APHRS Expert Consensus Statement

Fig. 3

YH Kim, Nogami A, et al. 2019 APHRS Expert Consensus Statement

Table 9-1. Consensus recommendations.

Recommendation	Class	LOE₽	References
In patients with healed myocardial infarction undergoing ablation of fascicular-Purkinje VT, the use of a 3D mapping system is recommended. ⁴⁹	le	C-LD↔	228-231 ₄ ,
The use of a 3D mapping system is recommended for ablation for fascicular-Purkinje VT to better understand the anatomy (e.g. left ventricular septum, papillary muscles, fascicules, Purkinje fiber) to reduce procedure duration and radiation exposure for both the patient and the operator.	þ	C-LD&	217, 232 ₄ 3
For bundle branch reentry VT or interfascicular VT, the use of 3D mapping system is reasonable to detect the optimal ablation target and to reduce the potential risk of atrio-ventricular block.	llaø	C-LDø	241, 243 ₄ ,
The 3D mapping system may be considered for the anatomical ablation for fascicular-Purkinje VT if tachycardia is noninducible or nonsustained. ²	llb∘	C-LD	227 ₄₂

YH Kim, Nogami A, et al. 2019 APHRS Expert Consensus Statement

Cryoablation

JACC: CLINICALELECTROPHYSIOLOGYVOL.1, NO.6, 2015

Cryoablation

Electrode specing: [Distail | D + 2 | 2 + 3 | 3 + 4 | Nominal (two) 2.0 3.0 5.0 2.0

	Dillin Sc	0 1000	1500	2000	2500	3000	3500	4000	1000	5000	1000	6000
100147	-l-	hal	-1-	And	L-r	-A-	-h	-1-	-1-	1-	m	m
100 847	m	m	~~	1-1	m	m	m	m	m	m	m	m
100 47	Ym	1-1-1-	$\sim c$	10	mr	Yen	r	-r	-m	-m-	m	m fr
100 evt. 47	20											
100 aVF 47	-m-	10 100	~u~	in	m	m	1 m	-10	400		-	m
100 1147	n	1 - h	-h	1	n	1	M	A	-n-	-1-	\sim	n
ECG V347	JY-	15-15	\neg	15	1 ac	14	M	-1-	$\pi \leq$	1		15-15
000 V4 47	Sin		JA	in		20		25	3m	1	$i\sim$	
003 V547	in	ini	vin	in	in	vin	ini	vir	in	in	in	\sim
100 V647	m	nr	m	1	-	you	vv	~~~	yr		m -	n
10710247				6 - 1				- 1		1		

Cryoablation

Patient #	Age, yrs	Sex	LVEF	СМР	AADs	VA	VAM	Follow-Up (months)	REC	AADs CA
1	34	М	57	-	-	VT	1	12	-	-
2	49	Μ	55	-	-	VT	1	10	Yes	-
3	27	F	60	-		PVC	1)	3	-	-
4	38	M	55	-	-	VT	1	7	-	-
5	37	Μ	45	TM	Flec	PVC	1	6	-	-
6	38	М	55	-	Diltz	NSVT	2	6	-	-
7	44	М	58	-	-	NSVT	1	6	-	-
8	45	F	55	-	-	NSVT	1	7	-	-
9	21	М	60	-	-	VT	1	12	-	-
10	57	F	55	-	Sot	NSVT	1	4	-	-

Results of Cryoenergy and Radiofrequency-Based Catheter Ablation for Treating Ventricular Arrhythmias Arising From the Papillary Muscles of the Left Ventricle, Guided by Intracardiac Echocardiography and Image Integration

Santiago Rivera, MD; Maria de la Paz Ricapito, MD; Leandro Tomas, MD; Josefina Parodi, MD; Guillermo Bardera Molina, ENG; Rodrigo Banega, ENG; Pablo Bueti, TEC; Agustin Orosco, MD; Marcelo Reinoso, MD; Milagros Caro, MD; Diego Belardi, MD; Gaston Albina, MD; Alberto Giniger, MD; Fernando Scazzuso, MD

- Background—Catheter radiofrequency ablation of ventricular arrhythmias (VAs) arising from the left ventricle's papillary muscles has been associated with inconsistent results. The use of cryoenergy versus radiofrequency has not been compared yet. This study compares outcomes and complications of catheter ablation of VA from the papillary muscles of the left ventricle with either cryoenergy or radiofrequency.
- *Methods and Results*—Twenty-one patients (40 ± 12 years old; 47% males; median ejection fraction $59\pm7.3\%$) with drug refractory premature ventricular contractions or ventricular tachycardia underwent catheter cryoablation or radiofrequency ablation. VAs were localized using 3-dimensional mapping, multidetector computed tomography, and intracardiac echocardiography, with arrhythmia foci being mapped at either the anterolateral papillary muscle or posteromedial papillary muscles of the left ventricle. Focal ablation was performed using an 8-mm cryoablation catheter or a 4-mm open-irrigated radiofrequency (n=9; *P*=0.08). Catheter stability was achieved in all patients (100%) treated with cryoenergy, and only in 2 (25%) patients treated with radiofrequency (*P*=0.001). Incidence of multiple VA morphologies was observed in 7 patients treated with radiofrequency (77.7%), whereas none was observed in those treated with cryoenergy (*P*=0.001). VA recurrence at 6 months follow-up was 0% for cryoablation and 44% for radiofrequency (*P*=0.03).
- Conclusions—Cryoablation was associated with higher success rates and lower recurrence rates than radiofrequency catheter ablation, better catheter stability, and lesser incidence of polymorphic arrhythmias. (Circ Arrhythm Electrophysiol. 2016;9:e003874. DOI: 10.1161/CIRCEP.115.003874.)

B

Circ Arrhythm Electrophysiol. 2016;9:e003874. DOI: 10.1161/CIRCEP.115.003874

Table 2. Procedural Characteristics

Characteristics	RF (n=9)	CRY0 (n=12)	<i>P</i> value
P Success	7 (77.8%)	12 (100.0%)	0.08
Recurrence	4 (44%)	0	0.03
RF Time	11.3±4.2	11.0±3.0	0.9
Energy time	425.3±86.1	700.0±216.1	0.002
TP Time	131.7±9.0	126.5±25.5	0.4
Complications	0	0	
ProA	8 (88.9%)	0	0.001
Cath Stab	2 (22.2%)	12 (100.0%)	0.001
Days F-UP	87 (IQR, 65–148)	360 (IQR, 116–365)	

Circ Arrhythm Electrophysiol. 2016;9:e003874. DOI: 10.1161/CIRCEP.115.003874

Kaplan–Meier survival estimates for recurrence. Patients free from ventricular arrhythmias after catheter ablation

Circ Arrhythm Electrophysiol. 2016;9:e003874. DOI: 10.1161/CIRCEP.115.003874

Heart Rhythm Case Reports, Vol 5, No 9, September 2019;5:472-475

Bipolar Ablation of PM VT

An externally irrigated ablation catheter was inserted into the LV via a transseptal approach, and an 8-mm-tip nonirrigated ablation catheter was inserted via a transaortic approach. RF was administered 3 times. The output was increased from 30 W to 50 W gradually, and Each application was continued for 60 s.

Heart Rhythm Case Reports, Vol 5, No 9, September 2019;5:472–475

Conclusion

- Imaging of papillary muscle, ICE and/or CT, first! Understand PM-Purkinje network and its typical electrogram identification Catheter instability and deep seated lesion
 - Cryo-ablation or bipolar ablation may be a better option.

Young-Hoon Kim, Hong -Euy Lim, Jong-Il Choi, Jae-Min Shim, Jin-Seok Kim, Kwang-No Lee, Suk-Kyu Oh, Youn-Gi Kim, Hee-Soon Park, Ki-Young Boo, Do-Young Kim, Nguyen Van Dang, Uy Yorn, Sze Man Yuen, Hyun-Soo Lee, Ju-Yong Sung, Ra-Seung Lim, Bu-Kyung Han, Jung-Hoon Che, Soon-Hwa Shin, Seong Hyun Kang, Eun-Hee Kim, So-Young An, Ji-Hae Yoon, Soo-Jeong Ko, Yeon-Hee Lee, Jeong-Tae Han